
BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: island

Spoiler

Stranded Far From Home (island)
by tähvend uustalu and taavet kalda (estonia)

In this task, we are given a graph with weighted nodes—the nodes are the villages, the weights are the
numbers of inhabitants, the edges are the roads between the villages. We say that the convincing
node eats the convinced one.

Subtask 1. 𝑁 ≤ 2000 and 𝑀 ≤ 2000.

In this subtask, we have enough time to simulate the process. For each node, we check whether its
tie color could win. This can be done by subsequently eating the neighboring nodes that are small
enough—we add all nodes adjacent to one that we already ate into a priority queue and repeatedly
eat the smallest entry of the priority queue, if this is small enough. If this is not possible, we cannot
win.

Subtask 2. 𝑠1 ≥ … ≥ 𝑠𝑁, and every village 𝑏 with 𝑏 > 1 is directly connected to exactly one
village 𝑎 with 𝑎 < 𝑏.

In this subtask, the graph is a tree rooted at the greatest node. The node weights are descending
from the root to the leaves. A node can always eat its whole subtree. We can solve this subtask using
dynamic programming: first, we compute the weight sum for the subtree of each node. This can be
done in linear time by recursively computing the sum for the children, and then adding their sum and
the weight of the current node to get the weight for the whole subtree. Then, we traverse the tree
again from top to bottom. The root can always win, any other node can win iff the sum of its subtree
is at least as big as its parent and the parent can win.

Subtask 3. Villages 𝑎 and 𝑏 are directly connected if and only if |𝑎 − 𝑏| = 1.

In this subtask, the graph is a line. The greatest node can always win. It ‘splits’ the line into two
halves—if the sum of one half is smaller than the greatest node, none of the nodes in this half can
win. Otherwise, the greatest node of this half can win, and we can recursively proceed with the
computation. Thus, we can solve this subtask by using data structures for range minimum and range
sum, for example a segment tree and prefix sums.

Subtask 4. There are at most 10 distinct numbers of inhabitants.

Here, there are only at most ten distinct node weights. We create a new graph and first add all nodes
with minimal weight. In every component of this graph, every node can eat every other node. Then,
we do a depth first search to compute the sum for each component of this graph. All components
which are too small to be able to eat a node with the next largest node weight cannot win—thus, we
mark all such nodes. Next, we proceed by adding the nodes with the next largest node weight to
the new graph, again compute the sum for each component (as the new nodes can now eat all other
nodes in their component), and proceed like this.

1/2

BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: island

Spoiler

Subtask 5. No further constraints.

For the full solution, we follow a similar idea as in Subtask 4. However, with more possible node
weights, we can not do a depth first search every time, but need some data structure to efficiently
manage the current components and mark the nodes that can not win anymore. This can be done for
example with a slightly modified union find structure—we mark the representative of a component if
this component can not win anymore. However, now an adaption to the path compression optimization
is necessary such that it does not destroy those markings: When searching for the representative in
the union find structure, we remember whether we passed a marked node, and if so, we also mark the
current node. Afterwards, we can safely do the path compression.
There are several other possibilities for managing the set of nodes that can not win anymore. For
example, we could, instead of modifying the union find structure, additionally hold node sets for
the components and, when merging, merge the smaller one into the bigger one. When marking a
component as ‘cannot win,’ we go through all the nodes in its set. This is fast enough, as every node
is marked only logarithmically often (every time it is marked, the total sum of the component at least
doubles).

2/2

