
BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: communication

Language: en

Flight to the Ford (communication)

Every break-in, even if hypothetical, needs a good escape plan. Thus, you have hired an assistant to
help you in your escape from the underwater vault you discovered yesterday.
In order for your plan to work, it will be important to communicate with your assistant. More
precisely, you will need to send them one of 𝑁 distinct messages (conveniently numbered from
1 to 𝑁). Unfortunately, your possibilities to send a message are very limited once you’re in your fancy
new submarine: There are only two different types of signals you can send. Therefore, you have to
encode your message as a sequence of these signals.

Obviously the signal displayed in the picture is
to be interpreted as the bit 1

However, sending such a signal is a complicated process*
and can even fail; in this case, the wrong signal is sent. At
least you can be sure that this will never happen twice in
a row. Moreover, you will always know which signal was
actually sent, and will be able to react accordingly.
You already noticed that it might be impossible to unambigu-
ously communicate a message under these circumstances.
Hence, you will be happy when your assistant can determine
at most two messages that you possibly wanted to commu-
nicate, i.e. such that your original message is one of them. Remembering that you are a talented
programmer, you now want to write a program which

• you can use to decide which signals to send to your assistant, and
• your assistant can use to determine the two possible messages.

As sending signals from your submarine might raise suspicion,† you can send at most 250 of them.
Beware moreover that your assistant will have to react to your message quickly. Thus, they must
notice when the communication ends without waiting for further signals!

Communication

This is a communication task, in which your program is run several times for each testcase. You have
to write the following functions; in each run of your submission, precisely one of them will be called,
multiple times and possibly with different parameters:

• The function void encode(int𝑁, int 𝑋)where as above𝑁 denotes the number of distinctmessages
and 𝑋 is the message you want to communicate, where 1 ≤ 𝑋 ≤ 𝑁. Inside encode you may make
up to 250 calls to the grader function int send(int s); s must be either 0 or 1, meaning you want
to send signal 𝑠. The return value of this function tells you which signal was actually sent. This
value may differ from s, but for any two consecutive calls to send inside the same call to encode
this will happen at most once.

• The function std::pair⟨int, int⟩ decode(int 𝑁) where 𝑁 is the same as in encode. For each call to
encode, there is one call to decode. Inside decode you may call the grader function int receive()
which returns the next signal sent during the corresponding call of encode. In the end, decode
should return a pair of two integers 1 ≤ 𝑎, 𝑏 ≤ 𝑁 (the case 𝑎 = 𝑏 is allowed) such that the original
message was one of 𝑎 or 𝑏.

* Involving the submarine’s torpedo tube, a surprising and elegant application of Dijkstra’s algorithm, and a family size
spaghetti pack

† It does lead to major radio interference as well as deeply disturbed local wildlife after all.

1/4



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: communication

Language: en

You will automatically fail a testcase if you call receive inside decode more often than send was
called in the respective run of encode. However, you are allowed to call receive fewer times
than that.

If any of your function calls does not satisfy the above constraints, your program will be immediately
terminated and judged as Not correct for the respective testcase. You must not write to standard
output or read from standard input; otherwise you may receive the verdict Security violation!.
You must include the file communication.h in your source code. To test your program locally, you
can link it with sample_grader.cpp, which can be found in the attachment for this task in CMS (see
below for a description of the sample grader, and see sample_grader.cpp for instructions on how
to run it with your program). Beware that for simplicity this sample grader does not run your program
twice but instead calls both encode and decode (exactly once) as part of a single run. The attachment
also contains a sample implementation as communication_sample.cpp.

Important technical remarks

As mentioned above, the functions encode and decode can be called several times per run. Please
note the following:

1. It is not guaranteed that the calls to decode will appear in the same order as the calls to encode.
2. The time limit below and the runtime displayed inside CMS refer to the average runtime of all

calls to encode and decode in a given run. Put differently, when there are 𝐾 calls to encode or 𝐾
calls to decode in a given run, then your program must not take more than 𝐾 ⋅ 0.005 s for this
run. It is guaranteed that there at least 50 calls to encode or decode in each run.

3. As usual, the memory limit refers to the maximum memory consumption at any point in time
during execution.

Constraints

We always have 3 ≤ 𝑁 ≤ 109.

Subtask 1 (𝟏𝟓 points). 𝑁 = 3

Subtask 2 (𝟖𝟓 points). No further constraints.
Your actual score in Subtask 2 depends on themaximum number𝑤max of signals sent over all messages
in testcases in this subtask according to the following piecewise linear function (rounded to the unique
nearest integer):

85

65

35

15
5

100 110 140 200 250

score

𝑤max

In particular, to get full score you must not make more than 100 calls to send per testcase.

2/4



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: communication

Language: en

Example Interaction

Consider a testcase with 𝑁 = 1337 and 𝑋 = 42.
First, the grader calls your function encode as encode(1337, 42). Then, a possible interaction between
your program and the grader could look as follows:

Your program Return value Explanation

send(1) 0 the wrong signal was sent
send(0) 0 the correct signal was sent (as was guaranteed)
send(1) 1 the correct signal was sent again
send(1) 0 the wrong signal was sent

Afterwards (in a new run of your program) the grader calls your function decode as decode(1337).
Here a possible interaction could look as follows:

Your program Return value Explanation

receive() 0 the first call to send returned 0 (although this
wasn’t the parameter you called it with)

receive() 0 the second call to send returned 0
receive() 1 the third call to send returned 1
return {1337, 42} — your solution is correct and is accepted

Note that your program would have been allowed to call receive one more time.

Grader

The sample grader first expects on standard input the integers 𝑁 and 𝑋 (1 ≤ 𝑋 ≤ 𝑁). Then, the grader
calls encode(𝑁, 𝑋) and writes to standard output a protocol of all calls to send by your program. For
each call to send it expects the return value on standard input.
Afterwards the grader calls decode(𝑁) and writes to standard output a protocol of all calls to receive
by your program. Upon termination, it writes one of the following messages to standard output:
Invalid input. The input to the grader via standard input was not of the above form.
Invalid send. You called send inside decode or you called send with a parameter different from 0 or 1.
Invalid reply to send. The return value to send given on standard input was neither 0 nor 1, or it
differed from the argument to send twice in a row.
Looks (and smells) fishy. You called send more than 250 times.
Invalid receive. You called receive inside encode.
Assistant waiting for Godot. You called receive more often than send.
Invalid answer. The function decode did not return a pair of integers between 1 and 𝑁.
Wrong answer. The pair returned by decode does not contain the original message 𝑋.
Correct: w signal(s) sent. The pair returned by decode contains the original message 𝑋 and there were
𝑤 calls to send.
In contrast, the grader actually used to judge your program will only output Not correct (for any of
the above errors) or Correct: w signal(s) sent. Moreover, it is adaptive, i.e. the parameters 𝑁 and 𝑋 as
well as the return values of send can depend on the behaviour of your program in the current as well
as other runs. Both the sample grader and the grader used to judge your program will terminate your
program automatically whenever one of the above errors occurs.

3/4



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: communication

Language: en

Limits

Time: 0.005 s
Memory: 8MiB

4/4


