
BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: communication

Spoiler

Flight to the Ford (communication)
by lukas michel (germany)

Subtask 1. 𝑁 = 3

By trial-and-error one can come up with a scheme that uses 3 bits. However, it is probably easier
to find (and describe) a solution to this subtask that never looks at the return value of send. Put
differently, we want to find three bitstrings (which after padding we can assume without loss of
generality to be of the same length ℓ) such that for any bitstring 𝐵 of length ℓ at most two of the
fixed bitstrings could be possibly corrupted into 𝐵. You can find such bitstrings either by hand or by
writing a separate program for that, which bruteforces all possible bitstrings of fixed small length;
one possible choice for ℓ = 4 is given by 0000, 0110, and 1111. Alternatively, you can also construct
three random bitstrings of medium to large length and hope to sneak past our grader.

Subtask 2. No further constraints

Partial solutions. The first thing we can try here is to iterate our solution from the previous subtask:
in the beginning, the assistant only knows that the message 𝑋 is one of 1,… , 𝑁. If we partition the set
𝑇0 = {1, … , 𝑁} into three sets 𝑆1, 𝑆2, 𝑆3 of roughly the same size and use the previous subtask to send
the unique 𝑖 with 𝑋 ∈ 𝑆𝑖, then afterwards the assistant will know that 𝑋 ∈ 𝑆𝑖 ∪ 𝑆𝑗 =∶ 𝑇1 for some 𝑗. Note
that we will actually also know that value of 𝑗 (and hence the set 𝑇1) since send tells us which signals
were actually sent. Thus, we can iterate the above process for the new set. As for |𝑇𝑛| > 2 always
|𝑇𝑛+1| < |𝑇𝑛|, this process will eventually terminate with only two possible messages left, and since in
fact any step cuts down the size of 𝑇 by a constant factor, we will only need 𝑂(log𝑁) steps. Doing the
exact maths or simply submitting and hoping for the best results in around 30 points (including the
15 points from the previous subtask) for the above scheme with 4 bits for 𝑁 = 3 or even 50 points for
the solution with bitstrings of length 3. Of course, we have to be slightly careful how we store the sets
𝑇 as we have neither enough time nor space in our submarine to keep a set of up to 109 elements.
However, we can arrange for the set 𝑇𝑛 to be a union of at most linearly many disjoint intervals by
simply going through the remaining possible messages in increasing order when doing the splitting.
Storing the 𝑇’s as such unions of disjoint intervals (and using this representation to compute the
splittings for the next step) easily fits into the respective limits.
There are now several ways to improve this solution, leading to a wide range of partial scores. In
particular, we can change the bitstrings we use to cut down the size of the search space. For example,
we can observe that one can actually also solve the case 𝑁 = 4 with the bitstrings 0000, 0110, 1001,
1111 of length 4 (without looking at the return values), which gives around 75 points.
Another idea that works very well is to simply take all possible bitstrings of length ℓ. Let us think about
how much this actually cuts down the search space: for a given bitstring 𝐵 of length ℓ received by
the assistant, without prior knowledge the possible original bitstrings are in 1-to-1-correspondence
with the possible error patterns, i.e. the strings of length ℓ containing no consecutive ones (the
correspondence is given by taking bitwise xor with 𝐵). We can compute the number 𝐹ℓ of such strings
recursively: if the last bit of our new string is 0, then the remainder of the string is any valid error
pattern; on the other hand, if the last bit is 1, then the bit directly before that has to be 0 while the
remaining part before that is again any valid error pattern. Thus, we get the relation 𝐹ℓ = 𝐹ℓ−1 + 𝐹ℓ−2 for
all ℓ ≥ 2 while 𝐹0 = 𝐹1 = 1, i.e. 𝐹ℓ is the ℓ-th Fibonacci number.* For ℓ ≫ 0, 𝐹ℓ ≈ Φ

ℓ+1/√5 withΦ = 1
2 (1+√5),

* There is a major dispute between the two SC chairs whether one should define 𝐹0 = 0 or 𝐹0 = 1. I’m sorry if you are used

1/3

BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: communication

Spoiler

so that |𝑇𝑛+1| ≈ (√5/Φ) ⋅ (Φ/2)
ℓ|𝑇𝑛|. Because of the constant factor √5/Φ > 1, this does not work well

for small ℓ while we may not make ℓ too large once the search space has been reduced sufficiently.
A solution balancing these outperforms the solution based on four patterns of length 4 mentioned
above slightly.

Full solution. (cf. J. Czyzowicz, K.B. Lakshmanan, A. Pelc. Searching with local constraints on error
patterns. European J. Combin. 15 (1994), pp. 217–222) For the full solution we will refine the above
ideas to keep two sets 𝑇corr𝑛 , 𝑇wrong𝑛 in decode, denoting the sets of possible messages 𝑋 if the last
bit was correct or incorrect, respectively. We will assume for now (and the procedure below will
guarantee) that these two sets are disjoint.
Given such a state, let 𝑈 ⊂ {1,… , 𝑁} such that we send the bit 1 precisely if 𝑋 ∈ 𝑈. Then afterwards,
decode will be in the state (𝑇corr𝑛+1 , 𝑇

wrong
𝑛+1) = (𝑈 ∩ (𝑇corr ∪ 𝑇wrong), 𝑇corr \ 𝑈) if the signal received is 1 and

((𝑇corr ∪ 𝑇wrong) \ 𝑈, 𝑈 ∩ 𝑇corr) otherwise. In particular,

(|𝑇corr𝑛+1 |, |𝑇
wrong
𝑛+1 |) = {

(|𝑇corr𝑛 ∩ 𝑈| + |𝑇wrong𝑛 ∩ 𝑈|, |𝑇corr𝑛 | − |𝑇corr𝑛 ∩ 𝑈|) if the bit is 1
(|𝑇corr| − |𝑇corr𝑛 ∩ 𝑈| + |𝑇wrong| − |𝑇wrong𝑛 ∩ 𝑈|, |𝑇corr𝑛 ∩ 𝑈|) otherwise.

So how should we pick the intersections 𝑇corr𝑛 ∩ 𝑈 and 𝑇wrong𝑛 ∩ 𝑈? One idea one can come up with is
that the sizes of the sets 𝑇corr𝑛+1 and 𝑇

wrong
𝑛+1 should actually be independent of the bit the other side

receives (as we really only care about the sizes of the sets and not about their elements, this prevents
our opponent from ever forcing us on the ‘worse’ path). Solving the corresponding system of linear
equations then suggests that 𝑈 should contain half of the elements of 𝑇corr𝑛 and 𝑇wrong𝑛 each. For the
specific roundings

|𝑇corr𝑛 ∩ 𝑈| = ⌈
|𝑇corr𝑛 |
2

⌉ |𝑇wrong𝑛 ∩ 𝑈| = ⌊
|𝑇wrong𝑛 |

2
⌋

one can (let a computer) calculate that this reduces the search space (for 𝑁 = 109) after 96 bits to
|𝑇corr𝑛 | + |𝑇wrong𝑛 | ≤ 3. While this strategy isn’t able to reduce the search space any further at this point,
we can combine this with one of the solutions to the previous subtask to get a solution which uses
99 (or 100) bits. Again ensuring that 𝑇corr and 𝑇wrong are always given by a union of linearly many
disjoint intervals, this can be implemented in linear space and time quadratic in the number of bits
sent, which easily fits into the time and memory constraints and gets full score.
In fact, the above solution can be shown to be close to optimal. For this, let us consider any possible
strategy to choose the sets 𝑈 in each step and look at the binary decision tree with nodes the pairs
(𝑇corr, 𝑇wrong) and edges the bits received by the assistant. We can assume without loss of generality
that all leaves are at the same height by simply sending 0 in encode once we have sent enough bits
for the solution but not yet sent as much bits as on the worst possible path.
For every 𝑘 ≥ 0 we set 𝑡corr(𝑘) to be the sum of the sizes of all the sets 𝑇corr appearing at level 𝑘,
and analogously we define 𝑡wrong(𝑘); by convention, 𝑡corr(0) = 𝑁 and 𝑡wrong(0) = 0. Looking at the
above formula, we see that independently of the choice of 𝑈 we always have 𝑡wrong(𝑘 + 1) = 𝑡corr(𝑘) and
𝑡corr(𝑘+1) = 𝑡corr(𝑘)+𝑡wrong(𝑘). Inductively we therefore see that 𝑡corr(𝑘)+𝑡wrong(𝑘) = (𝐹𝑘−1+𝐹𝑘) ⋅𝑁 = 𝐹𝑘+1 ⋅𝑁.
On the other hand, for any leaf |𝑇corr| + |𝑇wrong| ≤ 2, and since there are precisely 2𝑄 nodes at level
𝑄, we see that if the above tree has height 𝑄, then 2 ⋅ 2𝑄 ≥ 𝐹𝑄+1 ⋅ 𝑁, i.e. 2

𝑄+1/𝐹𝑄+1 ≥ 𝑁. Using the
approximation 𝐹𝑘 ≲ Φ

𝑘+1/√5 again, we therefore see that 𝑄 ≳ log2/Φ
𝑁Φ2

2√5
. Plugging in 𝑁 = 109 shows

that 𝑄 ≳ 96, i.e. we need at least 96 bits.

to the other convention—you are obviously wrong though

2/3

BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: communication

Spoiler

Final remarks

1. The above argument can be adapted to give a lower bound of 96 on the number of queries
in any solution, by setting 𝑇corr and 𝑇wrong to be the sets of all messages that decode could
possibly return for any possible future communication.

2. It is actually not hard to prove that it is impossible to unambiguously communicate under the
given circumstances already for 𝑁 = 2: considering two runs of encode, we can always arrange
that for any 𝑖 the 𝑖-th call to send in the first run returns the same as the 𝑖-th call in the second
run by simply alternatingly returning what the first or the second run wanted to send. Thus,
doing this for two distinct messages 𝑋 and 𝑌, we can guarantee that one of encode(𝑁, 𝑋) and
encode(𝑁, 𝑌) is a prefix of the other, making it impossible for decode to decide which message
encode wanted to communicate (as it has to stop reading after having received the prefix).

3. Writing a grader for this problem was a lot of fun.† Of all the strategies which bits to flip we
tried, two ideas proved to be particularly successful: the first one tries to force the output into
repetitions of a fixed pattern, ‘learning’ from previous iterations of your program which pattern
to use; in the second family of strategies, we actually run multiple instances of your program in
parallel for different messages, using the above trick to enforce that the signals sent in one of
the runs is a prefix of at least one other run’s signals, combined with several different heuristics
on what to do in cases where we have a choice which bits to flip.

† Well, at least most of the time...

3/3

