
BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: events

Spoiler

Event Hopping (events)
by evgeny vihrov (latvia)

Subtask 1. For every event, you can switch to at most one other event.

Consider a directed graph where events correspond to nodes and there is an edge from event 𝑖 to
event 𝑗 iff you can switch from 𝑖 to 𝑗. This graph can be efficiently constructed inO(𝑁 log𝑁) with a
sweep line since there are at most 𝑁 edges.
For simplicity, assume that there is only one component. Note that there is a case that prevents the
graph from being a directed tree. If there are two events 𝑎 and 𝑏 with the same endpoint, i.e. 𝐸𝑎 = 𝐸𝑏
and 𝑆𝑎 ≤ 𝑆𝑏, we have to handle queries that end at the shorter event 𝑏 separately. In any optimal
sequence of events, we first visit event 𝑎 and then event 𝑏. Therefore, we can solve this special case
by replacing queries of the form (−, 𝑏) with (−, 𝑎). This allows us to reduce the graph to a directed tree.
To answer a query (𝑠, 𝑒), we need to check that 𝑒 is a parent of 𝑠 and then compute the minimum
number of event switches using the depth of 𝑒 and 𝑠. We can precompute the depth of each node
in linear time with a DFS and with an inorder traversal of the tree we can answer in constant time
whether 𝑒 is a parent of 𝑠 or not. Therefore, the whole precomputation can be done in linear time
and we can solve this subtask inO(𝑁 log𝑁 + 𝑄).

Subtask 2. 𝑁 ≤ 1000 and 𝑄 ≤ 100

This subtask can be solved by brute force. If we do a naive BFS for each query, we get a solution with
a runtime ofO(𝑄𝑁2).

For the following subtasks we need an important observation. Assume that we attend an event 𝑠 and
want to attend an event 𝑒. Let 𝑠 = 𝑖1, 𝑖2, … , 𝑖𝑙 = 𝑒 be a sequence of events with a minimum number of
event switches. We can prove that if 𝑗 > 2, we can always replace in this sequence event 𝑖𝑗−1 with event
𝑘 such that it is possible to switch from 𝑘 to 𝑖𝑗 and 𝑆𝑘 is the smallest possible. Note that 𝐸𝑖𝑗−2 < 𝑆𝑖𝑗
(otherwise we could switch directly from 𝑖𝑗−2 to 𝑖𝑗) and 𝑆𝑖𝑗−1 ≤ 𝐸𝑖𝑗−2 (since we can switch from 𝑖𝑗−2 to 𝑖𝑗−1).
Combining it with the fact that 𝑆𝑘 ≤ 𝑆𝑖𝑗−1 and 𝐸𝑘 ≥ 𝑆𝑖𝑗, we can conclude that it is possible to switch from
𝑖𝑗−2 to 𝑘.

𝑆𝑖𝑗−2 𝐸𝑖𝑗−2

𝑆𝑖𝑗−1 𝐸𝑖𝑗−1

𝑆𝑖𝑗 𝐸𝑖𝑗

𝑆𝑘 𝐸𝑘

Subtask 3. 𝑁 ≤ 5000

This subtask can be solved by precomputing all possible answers. How do we do this faster than
O(𝑁3)?

1/2



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: events

Spoiler

Let us assume that all events are sorted in non-decreasing order by their end time and let switches(𝑗, 𝑖)
be the minimum number of event switches if we attend event 𝑗 and want to attend event 𝑖. We now
compute all answers with a fixed ending event 𝑖 by sweeping over the events in decreasing order
of their index. Furthermore, we use a set where we store the pairs (switches(𝑗, 𝑖), 𝑗) for all events 𝑗
to which we can currently switch. If we want to find switches(𝑘, 𝑖), we have to find an event 𝑗 with
minimal switches(𝑗, 𝑖), so that we can switch from 𝑘 to 𝑗. We can quickly find this event using our set.
Thus, it is possible to precompute all answers inO(𝑁2 log𝑁) and answer queries in constant time.
It is also possible to avoid a set and improve the runtime toO(𝑁2) by noticing that switches(−, 𝑖) is a
monotone function.
Alternatively, we can use some slow precomputation to find the event 𝑘 from the observation above
and answer queries using binary jumping.

Subtask 4. 𝑄 ≤ 100

This subtask can be solved by precomputing for each event 𝑖 the event 𝑘 such that it is possible
to switch from 𝑘 to 𝑖 and 𝑆𝑘 is the smallest possible. To find event 𝑘 fast, we can use a segment
tree/sparse table that allows us to query the minimum start time of all events that end in [𝑆𝑖, 𝐸𝑖].
Alternatively, we can iterate over all events in non-decreasing order of their end time and use a
monotonic stack to find event 𝑘 with a binary search.
We can now answer each query (𝑠, 𝑒) in linear time by starting at event 𝑒 and „switching backward“
with the precomputed information until we reach event 𝑠. This leads to a solution with complexity
O(𝑄𝑁).

Subtask 5. No event is completely contained in another event, i.e. there are no two events
𝑖 ≠ 𝑗 with 𝑆𝑖 ≤ 𝑆𝑗 < 𝐸𝑗 ≤ 𝐸𝑖.

Assume that we want to answer a query (𝑠, 𝑒). It is always optimal to switch to an event 𝑘 with
maximum 𝐸𝑘. The constraints in this subtask ensure that we can apply the same argument as in the
above observation. Therefore, we can find with a sweep line for each event 𝑖 the event 𝑘 such that we
can switch from 𝑖 to 𝑘 and 𝐸𝑘 is the largest possible. We can now compute an array next[𝑚][𝑖] that
stores the event that we reach if we start at event 𝑖 and perform 2𝑚 event switches. This allows us to
answer queries inO(log𝑁) using binary jumping.

Subtask 6. No further constraints.

To solve this subtask, we combine the solutions of the previous two subtasks. That means we first
precompute the event 𝑘 such that 𝑆𝑘 is the smallest possible and we can switch from event 𝑘 to event
𝑖 using a sweep line and a segment tree/sparse table. Then we compute an array prev[𝑚][𝑖] that
stores the event that we reach if we start at event 𝑖 and perform 2𝑚 ‘backward event switches.’ The
final complexity isO((𝑁 + 𝑄) log𝑁).

2/2


